Filomat 29:5 (2015), 1081–1083 DOI 10.2298/FIL1505081G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Congruence Relation for Wiener and Szeged Indices

Ivan Gutman^a, Kexiang Xu^b, Muhuo Liu^c

^aFaculty of Science, University of Kragujevac, P. O. Box 60, Kragujevac, Serbia ^bCollege of Science, Nanjing University of Aeronautics, Nanjing, P. R. China ^cSchool of Mathematical Science, Nanjing Normal University, Nanjing, P. R. China, and Department of Applied Mathematics, South China Agricultural University, Guangzhou, P. R. China

Abstract. In a recent paper [H. Lin, MATCH Communications in Mathematical and in Computer Chemistry 70 (2013) 575–582], a congruence relation for Wiener indices of a class of trees was reported. We now show that Lin's congruence is a special case of a much more general result.

1. Introduction

In this note we are concerned with simple graphs, without weighted or directed edges, and without self–loops. Let *G* be such graph. Let *V*(*G*) and *E*(*G*) be, respectively, the vertex and edge sets of *G*. The distance d(u, v) = d(u, v|G) between the vertices *u* and *v* of *G* is the length of a shortest path connecting *u* and *v*. If *G* is connected, then

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v|G)$$
(1)

is referred to as the *Wiener index* of *G*. For details of the Wiener index see the survey [7] and the references cited therein.

In a recent paper, Lin [5] reported a congruence relation for the Wiener index of certain trees. In the terminology used in [5], a tree is said to have a path factor, if it has a spanning forest whose all components are paths of equal order. Let $\mathcal{T}(p, n)$ be the set of path–factor trees of order pn, having a spanning forest consisting of p paths of order n. Then Lin's congruence can be stated as:

Theorem 1.1. [5] If $T_a, T_b \in \mathcal{T}(p, n)$, then $W(T_a) \equiv W(T_b) \pmod{n}$.

In what follows we show that Theorem 1.1 is a special case of a much more general result. For this we first need to recall the definition of the *Szeged index* [2–4, 6].

²⁰¹⁰ Mathematics Subject Classification. Primary 05C12; Secondary 05C05

Keywords. Wiener index; Szeged Index; Congruence relation

Received: 7 November 2013; Accepted: 12 January 2014

Communicated by Francesco Belardo

Research partially supported by the NSFC projects Nos. 11071088, 11201156, and 11201227, the China Postdoctoral Science Foundation (2013-530253), the Natural Science Foundation of Jiang Su Province (No. BK20131357), and the Project of Graduate Education Innovation of Jiangsu Province (No. CXZZ12–0378)

Email addresses: gutman@kg.ac.rs (Ivan Gutman), kexxu1221@126.com (Kexiang Xu), liumuhuo@163.com (Muhuo Liu)

Let *e* be an edge of the graph *G*, connecting the vertices *u* and *v*. Denote by $n_1(e|G)$ the number of elements of the set $N_1(e|G) = \{x \in V(G) | d(x, u) < d(x, v)\}$. Analogously, let $n_2(e|G)$ be the cardinality of the set $N_2(e|G) = \{x \in V(G) | d(x, u) > d(x, v)\}$. Then the Szeged index is defined as

$$Sz(G) = \sum_{e \in E(G)} n_1(e|G) n_2(e|G) .$$
(2)

Although the right-hand sides of Eqs. (1) and (2) look quite dissimilar, the following result holds:

Theorem 1.2. [4] If G is a connected graph, then the equality Sz(G) = W(G) holds if and only if all blocks of G are complete graphs. In particular, the equality Sz(G) = W(G) holds for trees.

2. Generalizing Theorem 1.1

For $p \ge 2$, let G_1, G_2, \ldots, G_p be connected graphs with disjoint vertex sets, each of order $n \ge 2$. Let Γ_0 be the (disconnected) graph of order pn, whose components are G_1, G_2, \ldots, G_p . Construct a graph Γ by adding p - 1 new edges $e_1, e_2, \ldots, e_{p-1}$ to Γ_0 , so that Γ becomes connected.

Evidently, $e_1, e_2, \ldots, e_{p-1}$ are cut-edges of Γ .

Theorem 2.1. Let the graph Γ be constructed as described above. Then, irrespective of the actual position of the edges $e_1, e_2, \ldots, e_{p-1}$,

$$Sz(\Gamma) \equiv \sum_{i=1}^{p} Sz(G_i) \pmod{n}$$
.

Proof. Bearing in mind Eq. (2) and the structure of the graph Γ , we have

$$Sz(\Gamma) = \sum_{i=1}^{p} \sum_{e \in E(G_i)} n_1(e|\Gamma) n_2(e|\Gamma) + \sum_{k=1}^{p-1} n_1(e_k|\Gamma) n_2(e_k|\Gamma) .$$
(3)

Consider first the term $n_1(e|\Gamma)$ for some $e \in E(G_i)$. Let $j \neq i$.

In view of the way in which the graph Γ is constructed, if a vertex $w \in V(G_j)$ belongs to the set $N_1(e|\Gamma)$, then (and only then) all vertices of G_j belong to $N_1(e|\Gamma)$. Since all the subgraphs G_j , j = 1, 2, ..., p, are assumed to possess equal number of vertices (*n*), it follows that $n_1(e|\Gamma) = n_1(e|G_i) + \alpha n$ for some non-negative integer α .

By the same argument, $n_2(e|\Gamma) = n_2(e|G_i) + \beta n$ for some non-negative integer β . Therefore,

$$n_1(e|\Gamma) n_2(e|\Gamma) \equiv n_1(e|G_i) n_2(e|G_i) \pmod{n}$$

and

$$\sum_{e \in E(G_i)} n_1(e|\Gamma) n_2(e|\Gamma) \equiv Sz(G_i) \pmod{n} .$$
(4)

By an analogous reasoning we conclude that for k = 1, 2, ..., p - 1,

$$n_1(e_k|\Gamma) = \gamma n$$
 and $n_2(e_k|\Gamma) = \delta n$

where γ and δ are positive integers, such that $\gamma + \delta = p$. Consequently,

$$\sum_{k=1}^{p-1} n_1(e_k | \Gamma) \, n_2(e_k | \Gamma) \equiv 0 \pmod{n} \,. \tag{5}$$

Theorem 2.1 follows now by substituting (4) and (5) back into (3). \Box

3. Corollaries of Theorem 2.1

Corollary 3.1. If $G_1 \cong G_2 \cong \cdots \cong G_p \cong G$, then, irrespective of the actual position of the edges $e_1, e_2, \ldots, e_{p-1}$,

$$Sz(\Gamma) \equiv p Sz(G) \pmod{n}$$

Bearing in mind Theorem 1.2, we arrive at:

Corollary 3.2. If G_i , i = 1, 2, ..., p, are connected graphs, each of order n, whose all blocks are complete graphs (implying that also Γ has the same property), then

$$W(\Gamma) \equiv \sum_{i=1}^{p} W(G_i) \pmod{n}.$$
(6)

In particular, relation (6) holds if Γ *is a tree.*

Corollary 3.3. If, in addition to the conditions stated in Corollary 3.2, $G_1 \cong G_2 \cong \cdots \cong G_p \cong G$, then, irrespective of the actual position of the edges $e_1, e_2, \ldots, e_{p-1}$,

$$W(\Gamma) \equiv p W(G) \pmod{n} . \tag{7}$$

In particular, relation (7) holds if Γ *is a tree.*

Let P_n denote the path of order *n*, and recall that its Wiener index is equal to $\binom{n+1}{3}$.

Corollary 3.4. If $G_1 \cong G_2 \cong \cdots \cong G_p \cong P_n$, then irrespective of the actual position of the edges $e_1, e_2, \ldots, e_{p-1}$,

$$W(\Gamma) \equiv p \binom{n+1}{3} \pmod{n} .$$
(8)

Lin's Theorem 1.1 is an immediate consequence of Corollary 3.4.

References

- A. Dobrynin, I. Gutman, On a graph invariant related to the sum of all distances in a graph, Publications de l'Institut Mathématique (Beograd) 56 (1994) 18–22.
- [2] I. Gutman, A. A. Dobrynin, The Szeged index a success story, Graph Theory Notes of New York 34 (1998) 37-44.
- [3] S. Klavžar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Applied Mathematics Letters 9(5) (1996) 45–49.
 [4] J. Li, A Relation between the edge Szeged index and the ordinary Szeged index, MATCH Communications in Mathematical and in Computer Chemistry 70 (2013) 621–625.
- [5] H. Lin, A congruence relation for the Wiener index of trees with path factors, MATCH Communications in Mathematical and in Computer Chemistry 70 (2013) 575–582.
- [6] M. J. Nadjafi-Arani, H. Khodashenas, A. R. Ashrafi, On the differences between Szeged and Wiener indices of graphs, Discrete Mathematics 311 (2011) 2233–2237.
- [7] K. Xu, M. Liu, K. C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance–based topological indices, MATCH Communications in Mathematical and in Computer Chemistry 71 (2014) 461–508.

1083