A Congruence Relation for Wiener and Szeged Indices

Ivan Gutman ${ }^{\text {a }}$, Kexiang Xu ${ }^{\text {b }}$, Muhuo Liu ${ }^{\text {c }}$
${ }^{a}$ Faculty of Science, University of Kragujevac, P. O. Box 60, Kragujevac, Serbia
${ }^{b}$ College of Science, Nanjing University of Aeronautics, Nanjing, P. R. China
${ }^{c}$ School of Mathematical Science, Nanjing Normal University, Nanjing, P. R. China, and Department of Applied Mathematics, South China Agricultural University, Guangzhou, P. R. China

Abstract

In a recent paper [H. Lin, MATCH Communications in Mathematical and in Computer Chemistry 70 (2013) 575-582], a congruence relation for Wiener indices of a class of trees was reported. We now show that Lin's congruence is a special case of a much more general result.

1. Introduction

In this note we are concerned with simple graphs, without weighted or directed edges, and without self-loops. Let G be such graph. Let $V(G)$ and $E(G)$ be, respectively, the vertex and edge sets of G. The distance $d(u, v)=d(u, v \mid G)$ between the vertices u and v of G is the length of a shortest path connecting u and v. If G is connected, then

$$
\begin{equation*}
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v \mid G) \tag{1}
\end{equation*}
$$

is referred to as the Wiener index of G. For details of the Wiener index see the survey [7] and the references cited therein.

In a recent paper, Lin [5] reported a congruence relation for the Wiener index of certain trees. In the terminology used in [5], a tree is said to have a path factor, if it has a spanning forest whose all components are paths of equal order. Let $\mathcal{T}(p, n)$ be the set of path-factor trees of order $p n$, having a spanning forest consisting of p paths of order n. Then Lin's congruence can be stated as:

Theorem 1.1. [5] If $T_{a}, T_{b} \in \mathcal{T}(p, n)$, then $W\left(T_{a}\right) \equiv W\left(T_{b}\right)(\bmod n)$.

In what follows we show that Theorem 1.1 is a special case of a much more general result. For this we first need to recall the definition of the Szeged index $[2-4,6]$.

[^0]Let e be an edge of the graph G, connecting the vertices u and v. Denote by $n_{1}(e \mid G)$ the number of elements of the set $\mathcal{N}_{1}(e \mid G)=\{x \in V(G) \mid d(x, u)<d(x, v)\}$. Analogously, let $n_{2}(e \mid G)$ be the cardinality of the set $\mathcal{N}_{2}(e \mid G)=\{x \in V(G) \mid d(x, u)>d(x, v)\}$. Then the Szeged index is defined as

$$
\begin{equation*}
S z(G)=\sum_{e \in E(G)} n_{1}(e \mid G) n_{2}(e \mid G) \tag{2}
\end{equation*}
$$

Although the right-hand sides of Eqs. (1) and (2) look quite dissimilar, the following result holds:
Theorem 1.2. [4] If G is a connected graph, then the equality $S z(G)=W(G)$ holds if and only if all blocks of G are complete graphs. In particular, the equality $S z(G)=W(G)$ holds for trees.

2. Generalizing Theorem 1.1

For $p \geq 2$, let $G_{1}, G_{2}, \ldots, G_{p}$ be connected graphs with disjoint vertex sets, each of order $n \geq 2$. Let Γ_{0} be the (disconnected) graph of order $p n$, whose components are $G_{1}, G_{2}, \ldots, G_{p}$. Construct a graph Γ by adding $p-1$ new edges $e_{1}, e_{2}, \ldots, e_{p-1}$ to Γ_{0}, so that Γ becomes connected.

Evidently, $e_{1}, e_{2}, \ldots, e_{p-1}$ are cut-edges of Γ.

Theorem 2.1. Let the graph Γ be constructed as described above. Then, irrespective of the actual position of the edges $e_{1}, e_{2}, \ldots, e_{p-1}$,

$$
S z(\Gamma) \equiv \sum_{i=1}^{p} S z\left(G_{i}\right)(\bmod n) .
$$

Proof. Bearing in mind Eq. (2) and the structure of the graph Γ, we have

$$
\begin{equation*}
S z(\Gamma)=\sum_{i=1}^{p} \sum_{e \in E\left(G_{i}\right)} n_{1}(e \mid \Gamma) n_{2}(e \mid \Gamma)+\sum_{k=1}^{p-1} n_{1}\left(e_{k} \mid \Gamma\right) n_{2}\left(e_{k} \mid \Gamma\right) \tag{3}
\end{equation*}
$$

Consider first the term $n_{1}(e \mid \Gamma)$ for some $e \in E\left(G_{i}\right)$. Let $j \neq i$.
In view of the way in which the graph Γ is constructed, if a vertex $w \in V\left(G_{j}\right)$ belongs to the set $\mathcal{N}_{1}(e \mid \Gamma)$, then (and only then) all vertices of G_{j} belong to $\mathcal{N}_{1}(e \mid \Gamma)$. Since all the subgraphs $G_{j}, j=1,2, \ldots, p$, are assumed to possess equal number of vertices (n), it follows that $n_{1}(e \mid \Gamma)=n_{1}\left(e \mid G_{i}\right)+\alpha n$ for some non-negative integer α.

By the same argument, $n_{2}(e \mid \Gamma)=n_{2}\left(e \mid G_{i}\right)+\beta n$ for some non-negative integer β.
Therefore,

$$
n_{1}(e \mid \Gamma) n_{2}(e \mid \Gamma) \equiv n_{1}\left(e \mid G_{i}\right) n_{2}\left(e \mid G_{i}\right)(\bmod n)
$$

and

$$
\begin{equation*}
\sum_{e \in E\left(G_{i}\right)} n_{1}(e \mid \Gamma) n_{2}(e \mid \Gamma) \equiv S z\left(G_{i}\right)(\bmod n) \tag{4}
\end{equation*}
$$

By an analogous reasoning we conclude that for $k=1,2, \ldots, p-1$,

$$
n_{1}\left(e_{k} \mid \Gamma\right)=\gamma n \quad \text { and } \quad n_{2}\left(e_{k} \mid \Gamma\right)=\delta n
$$

where γ and δ are positive integers, such that $\gamma+\delta=p$. Consequently,

$$
\begin{equation*}
\sum_{k=1}^{p-1} n_{1}\left(e_{k} \mid \Gamma\right) n_{2}\left(e_{k} \mid \Gamma\right) \equiv 0(\bmod n) \tag{5}
\end{equation*}
$$

Theorem 2.1 follows now by substituting (4) and (5) back into (3).

3. Corollaries of Theorem 2.1

Corollary 3.1. If $G_{1} \cong G_{2} \cong \cdots \cong G_{p} \cong G$, then, irrespective of the actual position of the edges $e_{1}, e_{2}, \ldots, e_{p-1}$,

$$
S z(\Gamma) \equiv p S z(G)(\bmod n)
$$

Bearing in mind Theorem 1.2, we arrive at:

Corollary 3.2. If $G_{i}, i=1,2, \ldots, p$, are connected graphs, each of order n, whose all blocks are complete graphs (implying that also Γ has the same property), then

$$
\begin{equation*}
W(\Gamma) \equiv \sum_{i=1}^{p} W\left(G_{i}\right)(\bmod n) . \tag{6}
\end{equation*}
$$

In particular, relation (6) holds if Γ is a tree.

Corollary 3.3. If, in addition to the conditions stated in Corollary 3.2, $G_{1} \cong G_{2} \cong \cdots \cong G_{p} \cong G$, then, irrespective of the actual position of the edges $e_{1}, e_{2}, \ldots, e_{p-1}$,

$$
\begin{equation*}
W(\Gamma) \equiv p W(G)(\bmod n) \tag{7}
\end{equation*}
$$

In particular, relation (7) holds if Γ is a tree.
Let P_{n} denote the path of order n, and recall that its Wiener index is equal to $\binom{n+1}{3}$.

Corollary 3.4. If $G_{1} \cong G_{2} \cong \cdots \cong G_{p} \cong P_{n}$, then irrespective of the actual position of the edges $e_{1}, e_{2}, \ldots, e_{p-1}$,

$$
\begin{equation*}
W(\Gamma) \equiv p\binom{n+1}{3}(\bmod n) \tag{8}
\end{equation*}
$$

Lin's Theorem 1.1 is an immediate consequence of Corollary 3.4.

References

[1] A. Dobrynin, I. Gutman, On a graph invariant related to the sum of all distances in a graph, Publications de l'Institut Mathématique (Beograd) 56 (1994) 18-22.
[2] I. Gutman, A. A. Dobrynin, The Szeged index - a success story, Graph Theory Notes of New York 34 (1998) 37-44.
[3] S. Klavžar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Applied Mathematics Letters 9(5) (1996) 45-49.
[4] J. Li, A Relation between the edge Szeged index and the ordinary Szeged index, MATCH Communications in Mathematical and in Computer Chemistry 70 (2013) 621-625.
[5] H. Lin, A congruence relation for the Wiener index of trees with path factors, MATCH Communications in Mathematical and in Computer Chemistry 70 (2013) 575-582.
[6] M. J. Nadjafi-Arani, H. Khodashenas, A. R. Ashrafi, On the differences between Szeged and Wiener indices of graphs, Discrete Mathematics 311 (2011) 2233-2237.
[7] K. Xu, M. Liu, K. C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Communications in Mathematical and in Computer Chemistry 71 (2014) 461-508.

[^0]: 2010 Mathematics Subject Classification. Primary 05C12; Secondary 05C05
 Keywords. Wiener index; Szeged Index; Congruence relation
 Received: 7 November 2013; Accepted: 12 January 2014
 Communicated by Francesco Belardo
 Research partially supported by the NSFC projects Nos. 11071088, 11201156, and 11201227, the China Postdoctoral Science Foundation (2013-530253), the Natural Science Foundation of Jiang Su Province (No. BK20131357), and the Project of Graduate Education Innovation of Jiangsu Province (No. CXZZ12-0378)

 Email addresses: gutman@kg.ac.rs (Ivan Gutman), kexxu1221@126.com (Kexiang Xu), liumuhuo@163.com (Muhuo Liu)

