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Available at: http://www.pmf.ni.ac.rs/filomat

A Congruence Relation for Wiener and Szeged Indices

Ivan Gutmana, Kexiang Xub, Muhuo Liuc

aFaculty of Science, University of Kragujevac, P. O. Box 60, Kragujevac, Serbia
bCollege of Science, Nanjing University of Aeronautics, Nanjing, P. R. China

cSchool of Mathematical Science, Nanjing Normal University, Nanjing, P. R. China, and
Department of Applied Mathematics, South China Agricultural University, Guangzhou, P. R. China

Abstract. In a recent paper [H. Lin, MATCH Communications in Mathematical and in Computer Chemistry
70 (2013) 575–582], a congruence relation for Wiener indices of a class of trees was reported. We now show
that Lin’s congruence is a special case of a much more general result.

1. Introduction

In this note we are concerned with simple graphs, without weighted or directed edges, and without
self–loops. Let G be such graph. Let V(G) and E(G) be, respectively, the vertex and edge sets of G. The
distance d(u, v) = d(u, v|G) between the vertices u and v of G is the length of a shortest path connecting u
and v. If G is connected, then

W(G) =
∑

{u,v}⊆V(G)

d(u, v|G) (1)

is referred to as the Wiener index of G. For details of the Wiener index see the survey [7] and the references
cited therein.

In a recent paper, Lin [5] reported a congruence relation for the Wiener index of certain trees. In the
terminology used in [5], a tree is said to have a path factor, if it has a spanning forest whose all components
are paths of equal order. Let T (p,n) be the set of path–factor trees of order p n, having a spanning forest
consisting of p paths of order n. Then Lin’s congruence can be stated as:

Theorem 1.1. [5] If Ta,Tb ∈ T (p,n), then W(Ta) ≡W(Tb) (mod n) .

In what follows we show that Theorem 1.1 is a special case of a much more general result. For this we
first need to recall the definition of the Szeged index [2–4, 6].
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Let e be an edge of the graph G, connecting the vertices u and v. Denote by n1(e|G) the number of
elements of the set N1(e|G) = {x ∈ V(G) | d(x,u) < d(x, v)}. Analogously, let n2(e|G) be the cardinality of the
setN2(e|G) = {x ∈ V(G) | d(x,u) > d(x, v)}. Then the Szeged index is defined as

Sz(G) =
∑

e∈E(G)

n1(e|G) n2(e|G) . (2)

Although the right–hand sides of Eqs. (1) and (2) look quite dissimilar, the following result holds:

Theorem 1.2. [4] If G is a connected graph, then the equality Sz(G) = W(G) holds if and only if all blocks of G are
complete graphs. In particular, the equality Sz(G) = W(G) holds for trees.

2. Generalizing Theorem 1.1

For p ≥ 2, let G1,G2, . . . ,Gp be connected graphs with disjoint vertex sets, each of order n ≥ 2. Let Γ0
be the (disconnected) graph of order p n , whose components are G1,G2, . . . ,Gp . Construct a graph Γ by
adding p − 1 new edges e1, e2, . . . , ep−1 to Γ0 , so that Γ becomes connected.

Evidently, e1, e2, . . . , ep−1 are cut-edges of Γ.

Theorem 2.1. Let the graph Γ be constructed as described above. Then, irrespective of the actual position of the edges
e1, e2, . . . , ep−1 ,

Sz(Γ) ≡
p∑

i=1

Sz(Gi) (mod n) .

Proof. Bearing in mind Eq. (2) and the structure of the graph Γ, we have

Sz(Γ) =

p∑
i=1

∑
e∈E(Gi)

n1(e|Γ) n2(e|Γ) +

p−1∑
k=1

n1(ek|Γ) n2(ek|Γ) . (3)

Consider first the term n1(e|Γ) for some e ∈ E(Gi). Let j , i.
In view of the way in which the graph Γ is constructed, if a vertex w ∈ V(G j) belongs to the set N1(e|Γ),

then (and only then) all vertices of G j belong to N1(e|Γ). Since all the subgraphs G j , j = 1, 2, . . . , p, are
assumed to possess equal number of vertices (n), it follows that n1(e|Γ) = n1(e|Gi)+αn for some non-negative
integer α.

By the same argument, n2(e|Γ) = n2(e|Gi) + βn for some non-negative integer β.
Therefore,

n1(e|Γ) n2(e|Γ) ≡ n1(e|Gi) n2(e|Gi) (mod n)

and ∑
e∈E(Gi)

n1(e|Γ) n2(e|Γ) ≡ Sz(Gi) (mod n) . (4)

By an analogous reasoning we conclude that for k = 1, 2, . . . , p − 1,

n1(ek|Γ) = γn and n2(ek|Γ) = δn

where γ and δ are positive integers, such that γ + δ = p. Consequently,

p−1∑
k=1

n1(ek|Γ) n2(ek|Γ) ≡ 0 (mod n) . (5)

Theorem 2.1 follows now by substituting (4) and (5) back into (3).
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3. Corollaries of Theorem 2.1

Corollary 3.1. If G1 � G2 � · · · � Gp � G, then, irrespective of the actual position of the edges e1, e2, . . . , ep−1 ,

Sz(Γ) ≡ p Sz(G) (mod n) .

Bearing in mind Theorem 1.2, we arrive at:

Corollary 3.2. If Gi , i = 1, 2, . . . , p, are connected graphs, each of order n, whose all blocks are complete graphs
(implying that also Γ has the same property), then

W(Γ) ≡
p∑

i=1

W(Gi) (mod n) . (6)

In particular, relation (6) holds if Γ is a tree.

Corollary 3.3. If, in addition to the conditions stated in Corollary 3.2, G1 � G2 � · · · � Gp � G, then, irrespective
of the actual position of the edges e1, e2, . . . , ep−1 ,

W(Γ) ≡ p W(G) (mod n) . (7)

In particular, relation (7) holds if Γ is a tree.

Let Pn denote the path of order n, and recall that its Wiener index is equal to
(n+1

3
)
.

Corollary 3.4. If G1 � G2 � · · · � Gp � Pn, then irrespective of the actual position of the edges e1, e2, . . . , ep−1 ,

W(Γ) ≡ p
(
n + 1

3

)
(mod n) . (8)

Lin’s Theorem 1.1 is an immediate consequence of Corollary 3.4.
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